Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Epilepsia Open ; 9(1): 106-121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37842880

RESUMO

OBJECTIVE: Adenylosuccinate lyase (ADSL) deficiency is a rare inherited metabolic disorder with a wide phenotypic presentation, classically grouped into three types (neonatal, type I, and type II). We aim to better delineate the pathological spectrum, focusing on the electroclinical characteristics and phenotypic differences of patients with ADSL deficiency. PATIENTS AND METHODS: Seven patients, from four different families, underwent serial electroencephalogram (EEG), clinical assessment, and neuroimaging. We also performed a systematic review of the cases published in the literature, summarizing the available clinical, neurophysiological, and genetic data. RESULTS: We report seven previously unreported ADSL deficiency patients with long-term follow-up (10-34 years). From the literature review, we collected 81 previously reported cases. Of the included patient population, 58 % (51/88) were classified as having ADSL deficiency type I, 28% (25/88) as having type II, and 14% (12/88) as having neonatal. The most frequently reported pathogenic variants are p.R426H homozygous (19 patients), p.Y114H in compound heterozygosity (13 patients), and p.D430N homozygous (6 patients). In the majority (89.2%), disease onset was within the first year of life. Epilepsy is present in 81.8% of the patients, with polymorphic and often intractable seizures. EEG features seem to display common patterns and developmental trajectories: (i) poor general background organization with theta-delta activity; (ii) hypsarrhythmia with spasms, usually adrenocorticotropic hormone-responsive; (iii) generalized epileptic discharges with frontal or frontal temporal predominance; and (iv) epileptic discharge activation in sleep with an altered sleep structure. Imaging features present consistent findings of cerebral atrophy with frontal predominance, cerebellar atrophy, and white matter abnormalities among the three types. SIGNIFICANCE: ADSL deficiency presents variable phenotypic expression, whose severity could be partially attributed to residual activity of the mutant protein. Although a precise phenotype-genotype correlation was not yet feasible, we delineated a common pattern of clinical, neuroradiological, and neurophysiological features.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Epilepsia , Erros Inatos do Metabolismo da Purina-Pirimidina , Recém-Nascido , Humanos , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/química , Seguimentos , Transtorno Autístico/genética , Atrofia
2.
Mol Biol Rep ; 51(1): 4, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38071695

RESUMO

In recent years, strategic plans for poultry production have emphasized quantitative traits, particularly body weight and carcass traits (meat yield), in response to overpopulation challenges. Candidate genes such as adenylosuccinate lyase (ADSL), melanocortin-4-receptor (MC4R), and calpain 1 (CAPN1) have played vital roles in this context due to their associations with muscle growth and body composition. This study aims to investigate the influence of polymorphisms and gene expressions of the aforementioned genes on body weight (BW), growth rate (GR), breast weight (BrW), and thigh weight (TW) across four distinct chicken breeds: Fayoumi, Matrouh, Mamourah, and Leghorn. The use of PCR-SSCP analysis revealed genetic polymorphisms through the identification of various patterns (genotypes) within the three examined genes. The ADSL, MC4R, and CAPN1 genes exhibited five, three, and two different genotypes, respectively. These polymorphisms displayed promising connections with enhancing economically significant production traits, particularly BW, BrW and TW. Furthermore, gene expression analyses were conducted on breast and thigh tissues obtained from the chicken breeds at 60 days of age, where ADSL and MC4R exhibited a noteworthy up-regulation in Fayoumi and Matrouh breeds, and down-regulation in Mamourah and Leghorn. In contrast, CAPN1 expression decreased across most breeds with a slight increase noted in Fayoumi breed. In conclusion, this investigation underscores the substantial impact of ADSL, MC4R, and CAPN1 genes on economically important production traits within Egyptian domestic chicken breeds. Consequently, these genes emerge as significant molecular markers, holding potential utility in avian selection and breeding programs aimed at enhancing productive performance.


Assuntos
Adenilossuccinato Liase , Galinhas , Animais , Galinhas/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Egito , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Carne , Peso Corporal
3.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 11): 278-284, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873935

RESUMO

Adenylosuccinate lyase (PurB) catalyzes two distinct reactions in the purine nucleotide biosynthetic pathway using the same active site. The ability to recognize two different sets of substrates is of structural and evolutionary interest. In the present study, the crystal structure of PurB from the thermophilic bacterium Thermus thermophilus HB8 (TtPurB) was determined at a resolution of 2.38 Šby molecular replacement using a structure predicted by AlphaFold2 as a template. The asymmetric unit of the TtPurB crystal contained two TtPurB molecules, and some regions were disordered in the crystal structure. The disordered regions were the substrate-binding site and domain 3. TtPurB forms a homotetramer and the monomer is composed of three domains (domains 1, 2 and 3), which is a typical structure for the aspartase/fumarase superfamily. Molecular dynamics simulations with and without substrate/product were performed using a full-length model of TtPurB which was obtained before deletion of the disordered regions. The substrates and products were bound to the model structures during the MD simulations. The fluctuations of amino-acid residues were greater in the disordered regions and became smaller upon the binding of substrate or product. These results demonstrate that the full-length model obtained using AlphaFold2 can be used to generate the coordinates of disordered regions within the crystal structure.


Assuntos
Adenilossuccinato Liase , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Thermus thermophilus , Homologia de Sequência de Aminoácidos , Cristalografia por Raios X
4.
PLoS Genet ; 19(9): e1010974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37773959

RESUMO

Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.


Assuntos
Adenilossuccinato Liase , Adenilossuccinato Liase/deficiência , Transtorno Autístico , Proteínas de Caenorhabditis elegans , Erros Inatos do Metabolismo da Purina-Pirimidina , Receptores de Amina Biogênica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Proteínas de Caenorhabditis elegans/genética
5.
Mol Genet Metab ; 140(3): 107686, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607437

RESUMO

Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Animais , Humanos , Transtorno Autístico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Fenótipo , Purinas
6.
Am J Med Genet A ; 191(1): 234-237, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271826

RESUMO

Adenylosuccinase deficiency is a rare inborn error of metabolism. We present a newborn who died at 52 days of age with clinical features suggestive of severe epileptic encephalopathy and leukodystrophy of unknown cause. Post-mortem examination showed an unusual vacuolar appearance of the brain. A molecular autopsy performed via singleton clinical exome analysis revealed a known pathogenic and a variant of uncertain significance in ADSL that encodes adenylosuccinase. Tests on previously stored plasma samples showed elevated succinyladenosine and succinylaminoimidazole carboxamide riboside levels. Adenylosuccinase activity in stored fibroblasts was only ~5% of control confirming the diagnosis of adenylosuccinase deficiency in the child. The parents opted for a chorionic villus biopsy in a subsequent pregnancy and had a child unaffected by adenylosuccinase deficiency. This report adds vacuolating leukodystrophy as a novel feature of adenylosuccinase deficiency and shows the power of biochemical investigations directed by genomic studies to achieve accurate diagnosis. Importantly, this case demonstrates the importance of anticipatory banking of biological samples for reverse biochemical phenotyping in individuals with undiagnosed disorders who may not survive.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Criança , Recém-Nascido , Lactente , Humanos , Autopsia , Adenilossuccinato Liase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
7.
Cancer Gene Ther ; 29(12): 1878-1894, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35840668

RESUMO

In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.


Assuntos
Adenilossuccinato Liase , MicroRNAs , Camundongos , Animais , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , MicroRNAs/genética , Purinas , RNA Mensageiro/química , Receptores ErbB/genética
8.
Mol Genet Metab ; 136(3): 190-198, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998670

RESUMO

Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.


Assuntos
Adenilossuccinato Liase , Erros Inatos do Metabolismo da Purina-Pirimidina , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Transtorno Autístico , Humanos , Inosina Monofosfato , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Purinas
9.
Science ; 372(6541): 512-516, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926954

RESUMO

DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables Z-DNA production on a large scale for a diverse range of applications.


Assuntos
2-Aminopurina/metabolismo , Adenilossuccinato Sintase/química , Bacteriófagos/química , Bacteriófagos/enzimologia , DNA Viral/química , DNA Forma Z/química , Proteínas não Estruturais Virais/química , 2-Aminopurina/química , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Bacteriófagos/genética , Pareamento de Bases , Vias Biossintéticas , DNA Viral/biossíntese , DNA Viral/genética , DNA Forma Z/biossíntese , DNA Forma Z/genética , Genoma Viral , Ligação de Hidrogênio , Domínios Proteicos , Especificidade por Substrato , Timina/química , Timina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
10.
Theranostics ; 11(9): 4011-4029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754045

RESUMO

Rationale: Adenylosuccinate lyase (ADSL) is an essential enzyme for de novo purine biosynthesis. Here we sought to investigate the putative role of ADSL in colorectal carcinoma (CRC) carcinogenesis and response to antimetabolites. Methods: ADSL expression levels were assessed by immunohistochemistry or retrieved from The Cancer Genome Atlas (TCGA) dataset. The effects of ADSL silencing or overexpression were evaluated on CRC cell proliferation, cell migration and cell-cycle. In vivo tumor growth was assessed by the chicken chorioallantoic membrane (CAM). Transfected cell lines or patient-derived organoids (PDO) were treated with 5-fluorouracil (5-FU) and 6-mercaptopurine (6-MP) and drug response was correlated with ADSL expression levels. Metabolomic and transcriptomic profiling were performed to identify dysregulated pathways and ADSL downstream effectors. Mitochondrial respiration and glycolytic capacity were measured using Seahorse; mitochondrial membrane potential and the accumulation of ROS were measured by FACS using MitoTracker Red and MitoSOX staining, respectively. Activation of canonical pathways was assessed by immunohistochemistry and immunoblotting. Results: ADSL expression is significantly increased in CRC tumors compared to non-tumor tissue. ADSL-high CRCs show upregulation of genes involved in DNA synthesis, DNA repair and cell cycle. Accordingly, ADSL overexpression accelerated progression through the cell cycle and significantly increased proliferation and migration in CRC cell lines. Additionally, ADSL expression increased tumor growth in vivo and sensitized CRCs to 6-MP in vitro, ex vivo (PDOs) and in vivo (CAM model). ADSL exerts its oncogenic function by affecting mitochondrial function via alteration of the TCA cycle and impairment of mitochondrial respiration. The KEAP1-NRF2 and mTORC1-cMyc axis are independently activated upon ADSL overexpression and may favor the survival and proliferation of ROS-accumulating cells, favoring DNA damage and tumorigenesis. Conclusions: Our results suggest that ADSL is a novel oncogene in CRC, modulating mitochondrial function, metabolism and oxidative stress, thus promoting cell cycle progression, proliferation and migration. Our results also suggest that ADSL is a predictive biomarker of response to 6-mercaptopurine in the pre-clinical setting.


Assuntos
Adenilossuccinato Liase/genética , Neoplasias Colorretais/genética , Mitocôndrias/genética , Fator 2 Relacionado a NF-E2/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myc/genética , Serina-Treonina Quinases TOR/genética , Células CACO-2 , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Respiração Celular/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HT29 , Humanos , Mitocôndrias/patologia
11.
Orphanet J Rare Dis ; 16(1): 112, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648541

RESUMO

BACKGROUND: Adenylosuccinate lyase deficiency (ADSLD) is an ultrarare neurometabolic recessive disorder caused by loss-of-function mutations in the ADSL gene. The disease is characterized by wide clinical variability. Here we provide an updated clinical profiling of the disorder and discuss genotype-phenotype correlations. RESULTS: Data were collected through "Our Journey with ADSL deficiency Association" by using a dedicated web survey filled-in by parents. Clinical and molecular data were collected from 18 patients (12 males, median age 10.9 years ± 7.3), from 13 unrelated families. The age at onset ranged from birth to the first three years (median age 0.63 years ± 0.84 SD), and age at diagnosis varied from 2 months to 17 years, (median age 6.4 years ± 6.1 SD). The first sign was a psychomotor delay in 8/18 patients, epilepsy in 3/18, psychomotor delay and epilepsy in 3/18, and apneas, hypotonia, nystagmus in single cases. One patient (sibling of a previously diagnosed child) had a presymptomatic diagnosis. The diagnosis was made by exome sequencing in 7/18 patients. All patients were definitively diagnosed with ADSL deficiency based on pathogenic variants and/or biochemical assessment. One patient had a fatal neonatal form of ADSL deficiency, seven showed features fitting type I, and nine were characterized by a milder condition (type II), with two showing a very mild phenotype. Eighteen different variants were distributed along the entire ADSL coding sequence and were predicted to have a variable structural impact by impairing proper homotetramerization or catalytic activity of the enzyme. Six variants had not previously been reported. All but two variants were missense. CONCLUSIONS: The study adds more details on the spectrum of ADSLD patients' phenotypes and molecular data.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
13.
Hepatology ; 74(1): 233-247, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336367

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is among the most common cancer types worldwide, yet patients with HCC have limited treatment options. There is an urgent need to identify drug targets that specifically inhibit the growth of HCC cells. APPROACH AND RESULTS: We used a CRISPR library targeting ~2,000 druggable genes to perform a high-throughput screen and identified adenylosuccinate lyase (ADSL), a key enzyme involved in the de novo purine synthesis pathway, as a potential drug target for HCC. ADSL has been implicated as a potential oncogenic driver in some cancers, but its role in liver cancer progression remains unknown. CRISPR-mediated knockout of ADSL impaired colony formation of liver cancer cells by affecting AMP production. In the absence of ADSL, the growth of liver tumors is retarded in vivo. Mechanistically, we found that ADSL knockout caused S-phase cell cycle arrest not by inducing DNA damage but by impairing mitochondrial function. Using data from patients with HCC, we also revealed that high ADSL expression occurs during tumorigenesis and is linked to poor survival rate. CONCLUSIONS: Our findings uncover the role of ADSL-mediated de novo purine synthesis in fueling mitochondrial ATP production to promote liver cancer cell growth. Targeting ADSL may be a therapeutic approach for patients with HCC.


Assuntos
Adenilossuccinato Liase/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Purinas/biossíntese , Trifosfato de Adenosina/biossíntese , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Taxa de Sobrevida
14.
Eur J Med Genet ; 63(12): 104061, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32890691

RESUMO

Adenylosuccinate lyase deficiency is a rare autosomal recessive disorder of purine metabolism. The disorder manifests with developmental delay, postnatal microcephaly, hypotonia, involuntary movements, epileptic seizures, ataxia and autistic features. Paroxysmal non-epileptic motor events are not a typical presentation of the disease. We describe an 8-year-old boy who presented with an infantile onset of prolonged episodes of multifocal sustained myoclonic tremor lasting from minutes to days on a background of global developmental delay and gait ataxia. Ictal EEG during these episodes was normal. Ictal surface EMG of the involved upper limb showed a muscular activation pattern consistent with cortical myoclonus. Brain MRI showed mild cerebral atrophy. Whole exome sequencing revealed a novel homozygous variant in the ADSL gene: c.1027G > A; p. Glu343Lys, inherited from each heterozygous parent. There was a marked elevation of urine succinyladenosine, confirming the diagnosis of adenylosuccinate lyase deficiency. In conclusion, myoclonic tremor status expands the spectrum of movement disorders seen in adenylosuccinate lyase deficiency.


Assuntos
Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Transtorno Autístico/genética , Mioclonia/genética , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Tremor/genética , Transtorno Autístico/diagnóstico , Criança , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Mioclonia/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Tremor/diagnóstico
15.
Nat Commun ; 10(1): 5177, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729379

RESUMO

Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.


Assuntos
Adenilossuccinato Liase/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Adenosina/metabolismo , Adenilossuccinato Liase/genética , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/fisiopatologia
16.
Poult Sci ; 98(10): 4327-4337, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111951

RESUMO

Consumer preference for slow-growing broiler chickens is rising because of increased demand for high-quality poultry products. Korat chicken (KRC) is a slow-growing chicken generated in Thailand. A goal of the KRC breeding program is to produce meat with a low purine content to benefit an aging population, without interfering with growth performance. Thus, this study aimed to investigate the effects of genes encoding melanocortin 4 receptor (MC4R), calpain 1 (CAPN1), and adenylosuccinate lyase (ADSL) on body weight, muscle fiber, and content of purine and its derivatives (i.e., adenine, guanine, hypoxanthine, and xanthine), to develop molecular markers for breeding programs. Genotypes of MC4R, CAPN1, and ADSL were obtained from 583 KRCs by PCR-single-strand conformation polymorphism. The body weight and purine contents of the KRCs were measured every 2 wk until the KRCs reached market weight at 10 wk of age. A significant association between the MC4R genotype and body weight at 2, 4, and 10 wk of age was detected. KRC possessing the BB genotype of CAPN1 showed significantly heavier body weight at 6 wk of age and guanine content at 4 wk of age, and a smaller muscle fiber diameter in the breast muscle at 10 wk of age, compared with those of the other genotypes. In addition, high expression levels of the CAPN1 and ADSL genes were detected in the breast muscle at 2 wk of age. Although higher purine contents were detected at a young age, no significant associations with the MC4R, CAPN1, and ADSL genes were detected. Our results indicate that MC4R and CAPN1 could be used as genetic markers for growth and meat quality in the slow-growing chicken breeding program.


Assuntos
Proteínas Aviárias/genética , Peso Corporal/genética , Galinhas/fisiologia , Purinas/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Animais , Proteínas Aviárias/metabolismo , Calpaína/genética , Calpaína/metabolismo , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Feminino , Marcadores Genéticos , Genótipo , Masculino , Carne/análise , Polimorfismo Conformacional de Fita Simples , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
17.
J Proteome Res ; 18(5): 2078-2087, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30964683

RESUMO

Purines represent a class of essential metabolites produced by the cell to maintain cellular homeostasis and facilitate cell proliferation. In times of high purine demand, the de novo purine biosynthetic pathway is activated; however, the mechanisms that facilitate this process are largely unknown. One plausible mechanism is through intracellular signaling, which results in enzymes within the pathway becoming post-translationally modified to enhance their individual enzyme activities and the overall pathway metabolic flux. Here, we employ a proteomic strategy to investigate the extent to which de novo purine biosynthetic pathway enzymes are post-translationally modified in 293T cells. We identified 7 post-translational modifications on 135 residues across the 6 human pathway enzymes. We further asked whether there were differences in the post-translational modification state of each pathway enzyme isolated from cells cultured in the presence or absence of purines. Of the 174 assigned modifications, 67% of them were only detected in one experimental growth condition in which a significant number of serine and threonine phosphorylations were noted. A survey of the most-probable kinases responsible for these phosphorylation events uncovered a likely AKT phosphorylation site at residue Thr397 of PPAT, which was only detected in cells under purine-supplemented growth conditions. These data suggest that this modification might alter enzyme activity or modulate its interaction(s) with downstream pathway enzymes. Together, these findings propose a role for post-translational modifications in pathway regulation and activation to meet intracellular purine demand.


Assuntos
Amidofosforribosiltransferase/metabolismo , Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/metabolismo , Acetilação , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Amidofosforribosiltransferase/genética , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Fosforribosilglicinamido Formiltransferase/genética , Fosforribosilglicinamido Formiltransferase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo , Ubiquitinação
18.
Genetics ; 211(4): 1297-1313, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700528

RESUMO

Purine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized de novo, reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans. In humans, several diseases are linked to purine metabolism through as yet poorly understood etiologies. Particularly, the deficiency in adenylosuccinate lyase (ADSL)-an enzyme involved both in the purine de novo and recycling pathways-causes severe muscular and neuronal symptoms. In order to address the mechanisms underlying this deficiency, we established Caenorhabditis elegans as a metazoan model organism to study purine metabolism, while focusing on ADSL. We show that the purine biosynthesis network is functionally conserved in C. elegans Moreover, adsl-1 (the gene encoding ADSL in C. elegans) is required for developmental timing, germline stem cell maintenance and muscle integrity. Importantly, these traits are not affected when solely the de novo pathway is abolished, and we present evidence that germline maintenance is linked specifically to ADSL activity in the recycling pathway. Hence, our results allow developmental and tissue specific phenotypes to be ascribed to separable steps of the purine metabolic network in an animal model.


Assuntos
Adenilossuccinato Liase/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Homeostase , Músculo Esquelético/metabolismo , Purinas/metabolismo , Adenilossuccinato Liase/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/citologia
19.
Sci Rep ; 8(1): 18008, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573755

RESUMO

The availability of genomic data from extinct homini such as Neanderthals has caused a revolution in palaeontology allowing the identification of modern human-specific protein substitutions. Currently, little is known as to how these substitutions alter the proteins on a molecular level. Here, we investigate adenylosuccinate lyase, a conserved enzyme involved in purine metabolism for which several substitutions in the modern human protein (hADSL) have been described to affect intelligence and behaviour. During evolution, modern humans acquired a specific substitution (Ala429Val) in ADSL distinguishing it from the ancestral variant present in Neanderthals (nADSL). We show here that despite this conservative substitution being solvent exposed and located distant from the active site, there is a difference in thermal stability, but not enzymology or ligand binding between nADSL and hADSL. Substitutions near residue 429 which do not profoundly affect enzymology were previously reported to cause neurological symptoms in humans. This study also reveals that ADSL undergoes conformational changes during catalysis which, together with the crystal structure of a hitherto undetermined product bound conformation, explains the molecular origin of disease for several modern human ADSL mutants.


Assuntos
Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Evolução Molecular , Homem de Neandertal/genética , Sequência de Aminoácidos , Animais , Catálise , Domínio Catalítico , Cristalização , Estabilidade Enzimática , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação Proteica , Mudança Social , Temperatura
20.
Br Poult Sci ; 59(5): 604-607, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29963908

RESUMO

1. Adenylosuccinate lyase (ADSL) plays an important role in the synthesis of inosine monophosphate (IMP). In this trial, a total of 200 pigeons were sampled and slaughtered. Seven meat quality traits and 11 carcass traits were measured. DNA sequencing was used to detect nucleotide mutations, and associations between ADSL gene polymorphisms and meat quality and carcass traits were analysed. 2. Sequencing results showed that 9 nucleotide mutations were found in the exons of the ADSL gene. All the mutations were synonymous except C13065G, which caused a change in amino acids (Ser to Arg). In addition, two of the detected single nucleotide polymorphisms (SNPs) had significant associations with meat quality and carcass traits. 3. For the C13065G SNP located in exon11, the IMP content of breast muscle in AA and AB genotype was higher than in the BB genotype (P < 0.01). The SNP G10696A located in exon10 was significantly associated with carcass rate, in which AA and AB genotype were higher than the BB genotype (P < 0.01). 4. The results indicated that the ADSL gene has a close association with meat quality and carcass traits in domestic pigeons, and G10696A and C13065G SNPs could be applied as genetic markers in molecular marker-assisted breeding of pigeons.


Assuntos
Adenilossuccinato Liase/genética , Columbidae/genética , Carne/normas , Polimorfismo de Nucleotídeo Único , Aves Domésticas , Aminoácidos , Animais , Proteínas Aviárias/metabolismo , Cruzamento , Galinhas/metabolismo , Columbidae/metabolismo , Éxons/genética , Frequência do Gene , Marcadores Genéticos , Genótipo , Inosina Monofosfato/metabolismo , Fenótipo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...